Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments
نویسندگان
چکیده
The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS) differently, and peoples' presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples' presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples' presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices.
منابع مشابه
Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments
Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive de...
متن کاملViFi: Virtual Fingerprinting WiFi-based Indoor Positioning via Multi-Wall Multi-Floor Propagation Model
Widespread adoption of indoor positioning systems based on WiFi fingerprinting is at present hindered by the large efforts required for measurements collection during the offline phase. Two approaches were recently proposed to address such issue: crowdsourcing and RSS radiomap prediction, based on either interpolation or propagation channel model fitting from a small set of measurements. RSS pr...
متن کاملOn the Choice of Access Point Selection Criterion and Other Position Estimation Characteristics for WLAN-Based Indoor Positioning
The positioning based on Wireless Local Area Networks (WLAN) is one of the most promising technologies for indoor location-based services, generally using the information carried by Received Signal Strengths (RSS). One challenge, however, is the huge amount of data in the radiomap database due to the enormous number of hearable Access Points (AP) that could make the positioning system very comp...
متن کاملLOCALI: Calibration-Free Systematic Localization Approach for Indoor Positioning
Recent advancements in indoor positioning systems are based on infrastructure-free solutions, aimed at improving the location accuracy in complex indoor environments without the use of specialized resources. A popular infrastructure-free solution for indoor positioning is a calibration-based positioning, commonly known as fingerprinting. Fingerprinting solutions require extensive and error-free...
متن کاملConstructing an Indoor Floor Plan Using Crowdsourcing Based on Magnetic Fingerprinting
A large number of indoor positioning systems have recently been developed to cater for various location-based services. Indoor maps are a prerequisite of such indoor positioning systems; however, indoor maps are currently non-existent for most indoor environments. Construction of an indoor map by external experts excludes quick deployment and prevents widespread utilization of indoor localizati...
متن کامل